Role of the Salmonella enterica serovar Typhi Fur regulator and small RNAs RfrA and RfrB in iron homeostasis and interaction with host cells.
نویسندگان
چکیده
Iron is an essential element but can be toxic at high concentrations. Therefore, its acquisition and storage require tight control. Salmonella encodes the global regulator Fur (ferric uptake regulator) and the small regulatory non-coding RNAs (sRNAs) RfrA and RfrB, homologues of RyhB. The role of these iron homeostasis regulators was investigated in Salmonella enterica serovar Typhi (S. Typhi). Strains containing either single or combined deletions of these regulators were obtained. The mutants were tested for growth in low and high iron conditions, resistance to oxidative stress, expression and production of siderophores, and during interaction with host cells. The fur mutant showed a growth defect and was sensitive to hydrogen peroxide. The expression of the sRNAs was responsible for these defects. Siderophore expression by S. Typhi and both sRNAs were regulated by iron and by Fur. Fur contributed to invasion of epithelial cells, and was shown for the first time to play a role in phagocytosis and intracellular survival of S. Typhi in human macrophages. The sRNAs RfrA and RfrB were not required for interaction with epithelial cells, but both sRNAs were important for optimal intracellular replication in macrophages. In S. Typhi, Fur is a repressor of both sRNAs, and loss of either RfrA or RfrB resulted in distinct phenotypes, suggesting a non-redundant role for these regulatory RNAs.
منابع مشابه
Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD.
The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1...
متن کاملImmunoprotectivity of Salmonella enterica serovar Enteritidis virulence protein, InvH, against Salmonella typhi
Objective(s):Typhoid fever is a dreadful disease of a major threat to public health in developing countries. Vaccination with bacterial immunodominant components such as surface proteins may prove as a potent alternative to live attenuated vaccines. InvH, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry int...
متن کاملControl by Fur of the nitrate respiration regulators NarP and NarL in Salmonella enterica.
Anaerobic metabolism is controlled by several transcriptional regulators, including ArcA, Fnr, NarP, and NarL, with the Fnr and ArcA proteins sensitive to the cell's redox status. Specifically, the two-component ArcAB system is activated in response to the oxidation state of membrane-bound quinones, which are the central electron carriers of respiration. Fnr, by contrast, directly senses cellul...
متن کاملFur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium.
Iron is an essential element for the survival of living cells. However, excess iron is toxic, and its uptake is exquisitely regulated by the ferric uptake regulator, Fur. In Salmonella, the Salmonella pathogenicity island 1 (SPI-1) encodes a type three secretion system, which is required for invasion of host epithelial cells in the small intestine. A major activator of SPI-1 is HilA, which is e...
متن کاملIdentification and Characterization of a Cis-Encoded Antisense RNA Associated with the Replication Process of Salmonella enterica Serovar Typhi
Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise while others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 159 Pt 3 شماره
صفحات -
تاریخ انتشار 2013